
API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 1 of 49

Certified API, REST & Microservices Tester (CARMT)
with Postman or Karate Syllabus

Version: 1.0 2021

Released: 1st of October, 2021

Copyright Notice
This document may be copied in its entirety, or extracts made, if the source is
acknowledged.

All CARMT syllabus and linked documents (including this document) are
copyright of API United (hereafter referred to as API).

The material authors and international contributing experts involved in the
creation of the CARMT resources hereby transfer the copyright to API. The
material authors, international contributing experts and APIU have agreed to
the following conditions of use:

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 2 of 49

● Any individual or training company may use this syllabus as the basis for
a training course if APIU and the authors are acknowledged as the
copyright owner and the source respectively of the syllabus, and they
have been officially recognized by API. More information regarding
recognition is available via: https://www.api-united.com/recognition

● Any individual or group of individuals may use this syllabus as the basis
for articles, books, or other derivative writings if APIU and the material
authors are acknowledged as the copyright owner and the source
respectively of the syllabus.

Thank you to the main author

● Dr. Srinivas Padmanabhuni

Thank you to the co-authors

● Gaurav Pandey, Jayapradeep Jiothis, José Díaz & Viepul Kocher

Thank you to the review committee

● Alexis Herrera, Alfonso Fernández, Ángel Rayo Acevedo, Christine
Green, Danilo Ramirez, Émilie Potin-Suau, Enrique Alejandro Decoss
Martinez, Fabiola Mero, Gastón Marichal, Guino Henostroza, Héctor
Ruvalcaba, Isaac Marcelo Malamud Kobrinsky, Ismael Betancourt, Javier
Chávez, Joan Tasayco, Julie Gardiner, Julio Córdoba Retana, Kyle
Alexander Siemens, Leandro Melendez, Manu Eyckmans, Márcia Araújo
Coelho, Márcia Campos, Mario Alvarez Gómez, Miaomiao Tang, Miguel
Angel De León Trejo, Miroslav Renda, Neriman Kocaman, Oscar
Alejandro Arreola Ramirez, Orlando Torres, Richard Seidl, Samuel Ouko,
Thomas Cagley, Valeria Cocco, Vanessa Islas Padilla, Wilson Gumba &
Wim Decoutere.

Revision History
Version Date Remarks

0.1 for Review Committee Nov, 2020 Review Committee

0.2 for Review Committee August, 2021 Final Prep for global release

1.0 Global Release October, 2021 Global release

https://www.api-united.com/recognition

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 3 of 49

Table of Contents

Learning Objectives/Cognitive Levels of Knowledge 6

Hands-on Objectives 7

Prerequisites 7

Chapter 1 - Introduction to Application Programming Interfaces (API) 8

1.1 Application Programming Interface (API) 8

1.1.1 Definition of API 8

1.1.2 Main Characteristics of APIs 9

1.2 Advantages and Implementation of API Usage 9

1.2.1 Advantages of API Usage 9

1.2.2 Integration with API 10

1.2.3 Different Types of APIs 11

1.2.4 Differences Between SOA and Microservices 12

1.2.5 Differences Between SOA and REST 12

Chapter 2 - REST Architecture 13

2.1 REST Architecture 13

2.1.1 Basics of REST Architecture 13

2.1.1.1 Uniform Resource Identifier (URI) 14

2.1.1.2 Characteristics of REST Architecture 15

2.2 The Main Components of REST 16

2.2.1 Components of REST 16

2.2.2 Request URI 16

2.2.3 Request Headers 17

2.2.4 Request Body 17

2.2.5 Response Headers 17

2.2.6 Response Codes 18

2.2.7 Response Body 18

2.3 The Different Methods of REST 19

2.3.1 Methods of REST 19

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 4 of 49

2.3.2 GET Method 19

2.3.3 POST Method 20

2.3.4 PUT Method 20

2.3.5 PATCH Method 21

2.3.6 DELETE Method 21

2.3.7 HEAD Method 21

Chapter 3 – SOA 22

3.1 Basics of Service-Oriented Architecture (SOA) 22

3.1.1 Defining SOA 22

3.1.2 Defining the Standards Stack for SOA 23

3.1.3 Defining the XML Schema 24

3.1.4 Defining SOAP 24

3.1.5 Defining WSDL 27

Chapter 4 - Microservices 31

4.1 Basics of Microservices 31

Chapter 5 - Testing APIs 33

5.1 API Testing in the Test Pyramid 34

5.1.1 API Testing in the Test Pyramid 34

5.1.2 Advantages of API Testing vs. GUI Testing 34

5.2 Positive Testing of APIs 35

5.2.1 Positive Testing Techniques 35

5.2.1.1 Test Techniques for Testing of APIs 35

5.2.1.2 Application of the Positive Testing of APIs 36

5.3 Negative Testing of APIs 37

5.3.1 Application of Negative Testing of APIs 37

5.4 Security Testing of APIs 38

5.4.1 Security Requirements of APIs 38

5.4.2 Different Security Tests of APIs 38

5.5 Load Testing of APIs 40

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 5 of 49

5.6 Integration Testing of APIs 40

5.7 Automation in API Testing 42

5.7.1 Assertions and Automation 42

5.7.2 Different Assertions in API testing 42

5.8 Mocking of Services 43

5.9 Testing Microservices 44

5.8.1 Contract First Testing 44

5.8.2 Resiliency Testing 45

Glossary 46

References 49

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 6 of 49

Business Outcomes

BO-1 Understand the current trends and industry applications of
application programming interfaces (APIs).

BO-2 Understand how to compare different API standards to help
choose the most suitable one.

BO-3 Be able to compare APIs of REST and SOAP types.

BO-4 Understand how API testing complements UI Testing.

BO-5 Define a test strategy for testing of APIs.

BO-6 Understand how data-driven testing can be applied to API
testing.

BO-7 Understand how testing of Microservices differs from API
testing.

BO-8 Use API test tools to automate testing of APIs.

Learning Objectives/Cognitive Levels of Knowledge
Learning objectives (LOs) are brief statements that describe what you are
expected to know after studying each chapter. The LOs are defined based on
Bloom’s modified taxonomy as follows:

● K1: Remember. Some of the action verbs are Remember, Recall, Choose,
Define, Find, Match, Relate, Select

● K2: Understand. Some of the action verbs are Understand, Summarize,
Generalize, Classify, Compare, Contrast, Demonstrate, Interpret,
Rephrase

● K3: Apply. Some of the action verbs are Implement, Execute, Use, Apply

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 7 of 49

Hands-on Objectives
Hands-on Objectives (HOs) are brief statements that describe what you are
expected to perform or execute to understand the practical aspect of Learning
Objectives.

The HOs are defined as follows:

● HO-0: Live demo of an exercise or recorded video
● HO-1: Guided exercise. The trainees follow the sequence of steps

performed by the trainer
● HO-2: Exercise with hints – Exercise to be solved by the trainees

utilizing hints provided by the trainer
● HO-3: Unguided exercises without hints

Prerequisites
Mandatory

● None

Recommended

● ISTQB® Certified Tester Foundation Level
● Basic knowledge of JavaScript
● Basic knowledge of developing web-based applications
● Some software development or testing experience

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 8 of 49

Chapter 1 - Introduction to Application Programming Interfaces (API)

Keywords: API, Interfaces, REST, SOA, Microservices, Standards, Integration.

LO-1.1.1 K2 Understand what an application programming
interface (API) is.

LO-1.1.2 K1 Recall the main characteristics of APIs:
standards, implementation independence, client
independence.

LO-1.2.1 K2 Understand the advantages of using APIs.

LO-1.2.2 K2 Explain how API-based integrations work.

LO-1.2.3 K2 Explain different flavors of APIs, in particular:
REST, SOA and Microservices.

LO-1.2.4 K1 Recall the differences between SOA and
Microservices.

LO-1.2.5 K1 Recall the differences between REST and SOA.

1.1 Application Programming Interface (API)

1.1.1 Definition of API
LO-1.1.1 K2 Understand what an application programming

interface (API) is.

An API can be defined as:

● the interface of a software application to the outside world
● a standards-based interface enabling any generic IT application to talk to

any other application

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 9 of 49

● an interface whose granularity can vary from interfacing a very small
functional module to a complete application interface.

1.1.2 Main Characteristics of APIs
LO-1.1.2 K1 Recall the main characteristics of APIs:

standards, implementation independence, client
independence.

The main characteristics of APIs are:

● based on strict standards
● can be called by other applications over the internet, intranet and

extranet
● allow applications to be connected by loosely coupled connections, one

side application does not make any assumption about the application on
the other side

● consuming client applications that communicate with the interface have
to be developed independently of the underlying software application

● should allow the underlying implementation of the interface to be
independent of any client software application communicating to the
interface

● standards evolve through industry consensus

1.2 Advantages and Implementation of API Usage

1.2.1 Advantages of API Usage
LO-1.2.1 K2 Understand the advantages of API Usage.

Architectures based on APIs have the following advantages:

● platform-independent
o eliminates the need for communicating applications to make

platform choices like J2EE versus .NET versus mainframe
● independent of communicating applications

o high reusability across current and future communicating
applications

● legacy applications preserving

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 10 of 49

o preserves existing IT investments by providing standard interfaces
to existing applications

● warrant incremental investment
o allows for incremental investment in technology, as opposed to

fresh solutions, via the use of interfaces over existing applications
● are graphical user interface (GUI) agnostic

o allows for multiple GUI technologies to be built on top of its core
functionality

● reduced overall integration cost
o because of standardized APIs, the cost of integration is lowered

1.2.2 Integration with API
LO-1.2.2 K2 Explain how API-based integrations work.

Due to the availability of standards-based interfaces on both the application and
client sides, the overall integration cost of connecting and integrating multiple
IT applications and IT clients is minimized. Previous to the emergence of APIs,
the integration between IT applications and clients would depend upon costly
middleware software.

Conventionally, M x N number of connectors for M applications to
communicate with N client applications (spaghetti integration). In the current
API centric integration, it would reduce to a M + N applications which would
be much less than M x N for any positive values of M and N greater than zero.
This reduces the integration complexity and cost.

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 11 of 49

1.2.3 Different Types of APIs
LO-1.2.3 K2 Explain different flavors of APIs, in particular:

REST, SOA and Microservices.

REST is a term used to describe an architecture style of distributed systems
utilized to connect resources using standard networks. The key idea in REST is
to access remote objects over standard networks with http as the basic
protocol, and uniquely addressing objects by using a unique identifier. A
resource in REST could refer to a HTML page, an image, a file, or any object
accessible over the internet. REST enables a standard way for clients to
connect to applications over the internet, using http as the underlying protocol.

SOA describes an architecture style of distributed systems built on standards-
based interfaces for IT applications. IT applications are called using standards-
based interfaces termed as services. Services lower the cost of the integration
of IT applications. There is an end-to-end standards stack for SOA. The SOA
stack consists of an XML (See Ref [XML]) based set of standards for language,
data, the messaging, and publishing of interfaces. Alongside, there is a set of
standards for non-functional requirements like security, and reliability.

Microservices are a fine-grained API type, where an application is structured
as a collection of small autonomous services. This architecture separates
portions of a (usually monolithic) application into small, complete services.

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 12 of 49

1.2.4 Differences Between SOA and Microservices
LO-1.2.4 K1 Recall the differences between SOA and

Microservices.

The differences between SOA and Microservices are listed below:

SOA Microservices

● higher granularity
● application wrapped up as a service
● protocols are verbose
● communication across heterogeneous

systems
● standards-based

● smaller granularity
● application made up of Microservices
● protocols are lightweight
● communication within homogeneous

systems
● non-standard

1.2.5 Differences Between SOA and REST

LO-1.2.5 K1 Recall the differences between SOA and REST.

SOA REST

● more standardized
● allows one-way as well as two-way

messaging
● can work for http as well as other

protocols
● standards for all system architecture

layers – messaging, interface
description, security, data, etc.

● uses XML and verbose models

● only protocol is standardized
● allows only two-way messaging
● protocol is http
● non-standardized data, messaging

structure, interface description
● uses lightweight data formats

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 13 of 49

Chapter 2 - REST Architecture

Keywords: REST, http, GET, POST, DELETE, CRUD, PUT, HEAD, PATCH, URI,
Query String

LO-2.1.1 K2 Explain the REST architecture characteristics.

LO-2.2.1 K1 Recall the different parts of REST interfaces.

LO-2.3.1 K2 Explain different REST methods - HEAD, GET,
POST, DELETE, PUT and PATCH.

LO-2.3.2 K2 Explain different testing needs of REST
interfaces.

2.1 REST Architecture
2.1.1 Basics of REST Architecture
LO-2.1.1 K2 Explain the REST architecture characteristics.

REST is an acronym standing for Representational State Transfer, and every
item of interest in REST is called a resource.

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 14 of 49

2.1.1.1 Uniform Resource Identifier (URI)

Each resource has a unique Uniform
Resource Identifier (URI),as shown in the
illustration.

A URI is a string which uniquely identifies
a resource on the internet. URI can be of
two types: Uniform Resource Locator
(URL) or Uniform Resource Name (URN).

A URL is a subset of URI which
additionally specifies the mechanism of
obtaining the resource.

Structure of a URI (a URL):

Source: Ref [ur1]

The different parts of a URI (specifically URL) are:

● Scheme: it indicates the protocol to access the resource, e.g.
http/https/FTP/SMTP/File. (See Ref [ur])

● Authority: section, preceded often by :// or :/// which consists of an
optional username, mandatory hostname or IP address and an optional
port number (the port number is not used when the resource is on a
default port for a given protocol).

● Path: is a sequence of path segments (each separated by /) which
indicates the location of the resource relative to the top domain. The path
may be fixed or may involve variable values. For instance, the device ID
can be part of the path where the ID will vary for different devices.

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 15 of 49

● Query String: the last key value pair of URL where there is a set of key
value pairs, preceded by ? (e.g. ?k1=v1&k2=v2). An example from the
search engine ABC for a search query:

https://www.abc.com/search?q=Bangalore+Club&search=&form=QBLH
o the scheme (protocol) is https
o the authority is www.abc.com (port 443 is assumed due to it being

the default port for https)
o the path is /search (in some URLs, only path exists without any

query string)
o the Query String is ?q=Bangalore+Club&search=&form=QBLH

● Fragment: is a relative location within the web page.

These parts of the URL collectively indicate accessing a function on the server,
which uses the arguments provided in the query string.
A URN, on the other hand, is an unambiguous way to identify a resource.
Example: an ISBN number.
All URNs and URLs are URIs but not vice versa.
Example of URN : urn:isbn: 0439064872

2.1.1.2 Characteristics of REST Architecture
REST interfaces allow a web-based resource to be accessed from any other
client application on a network. The resource could be an actual object on the
server, or it could be a verb (a method) to be called on the server. Some of the
most important characteristics of REST architecture are:

● every REST method is a client server style interaction, with a request
and a corresponding response.

● REST methods typically use http(s) as the protocol for web-based access
to REST resources.

● a REST method will be stateless by default, i.e., it means that no stored
context on the server can be used.

● all resources can only be accessed by basic methods HEAD, GET, POST,
DELETE, PUT and PATCH.

● the format of a resource URI is not standard, so that one server may put
variables in the resource part, for example,
“https://endpoint.com/devices/1”, while the other may want to put it in the
query string, for example, “https://endpoint.com/devices?deviceid=1”.
Both are acceptable designs.

https://endpoint.com/devices/1
https://device/types/%7btypeId%7d/devices/%7bdeviceId%7d/diag/logs

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 16 of 49

2.2 The Main Components of REST
2.2.1 Components of REST
LO-
2.2.1

K1 Recall the different parts of REST interfaces.

The REST interfaces contain different components, each of which are explored
in subsequent sections:

● Request URI
● Request Headers
● Response Headers
● Response Codes
● Response Body

2.2.2 Request URI
HO-
2.2.2

H2 Decompose some real URIs to identify different parts
of the request.

A request URI is typically of the form:
https://TLD/Resource?k1=v1&k2=v2&k3=v3

Top Level Domain (TLD) represents the host name or the IP address. The
resource can be a hierarchical name (e.g. search/b/c) or a simple name (e.g.
search). The query string at the end is a collection of key value pairs, for
example:

https://www.abcz.com/search?q=Bangalore+Club&search=&form=QBLH
● the TLD is www.abcz.com
● the resource is search

● the Query String is ?q=Bangalore+Club&search=&form=QBLH

The variable parts of the request URI are either in the resource part or in the
query string or in both places.

https://tld/Resource?k1=v1&k2=v2&k3=v3

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 17 of 49

2.2.3 Request Headers
HO-2.2.3 H2 Examine request headers in a typical REST Request.

These are the request headers that are commonly present in http requests:

● Accept: specify desired media type of response
● Accept-Language: specify desired language of response
● Date: date/time at which the message was originated
● Host: host and port number of a requested resource
● If-Match: conditional request
● Referrer: URI of previously visited resource
● User-Agent: identifier string for web browser or user agent. Based on

this header, the server usually sends a customized response for
different browsers. For example, a mobile app will be sent a smaller
amount of content (only important content) as compared to a browser
from a desktop.

● Cookie: matched cookies for state maintenance

2.2.4 Request Body
HO-2.2.3 H2 Examine request body in a typical REST Request.

A REST request has an optional request body component that is commonly
present in methods other than GET. This body can contain detailed data, large
documents which usually cannot be sent as part of a URL.

2.2.5 Response Headers
HO-2.2.5 H2 Examine response headers in a typical REST

method call.

These are the commonly found response headers in the http response:

● Allow: list the REST methods supported by the request URI
● Content-Language: language of the response content
● Content-Type: media type of representation, where typical content types

are text/html, application/json, etc.

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 18 of 49

● Content-Length: length in bytes of the representation
● Date: date/time at which the message was originated
● Expires: date/time after which the response is considered obsolete
● Last-Modified: date/time at which the representation was last changed
● Set-Cookie: sets cookies for the domain. This is useful for maintaining the

state, as http basically is stateless.

2.2.6 Response Codes
HO-2.2.6 H2 Examine different response codes in multiple real-

world REST method calls.

There are five categories of response codes. The response codes of http
(Source: Ref [co1]) are summarized below:

● 1XX: Informational
● 2XX: Success

200 OK, 201 Created, 202 Accepted, 204 No Content
● 3XX: Redirection

300 Multiple Choices, 301 Moved Permanently, 302 Moved Temporarily,
304 Not Modified

● 4XX: Client Error
400 Bad Request, 401 Unauthorized, 403 Forbidden, 404 Not Found

● 5XX: Server Error
500 Internal Server, Error 502 Not Implemented

2.2.7 Response Body
HO-2.2.7 H2 Examine the response body in a real-world REST

method.

The response body is the content returned from the server in response to a
REST method call. Typically, this response is in form of JSON. JSON stands for
JavaScript Object Notation. This is a lightweight data format used for storing
and transporting data. JSON is easy to understand and is self-explanatory.

An example of a JSON response is:
{"gpa":4.0,"gre":65,"id":2344,"rank":2}

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 19 of 49

This illustrates a JSON record with four keys and the corresponding values.
This particular record represents a student’s details. More complex JSON
objects can be formed by nesting JSON records inside other JSON records.

2.3 The Different Methods of REST
2.3.1 Methods of REST
LO-2.3.1 K2 Explain different REST methods - HEAD, GET,

POST, DELETE, PUT and PATCH.

LO-2.3.2 K2 Explain different testing needs of REST
interfaces.

The main methods in REST architecture based on http(s) are:

● GET
● POST
● PUT
● PATCH
● DELETE
● HEAD

In the context of REST architecture, there are semantics analogous to the
database operations (Create, Read, Update, Delete) for the key methods. This
mapping provides a clear design principle for designing REST interfaces. The
mapping can be roughly illustrated as below:

● GET – read operation
● POST – create records
● PUT/PATCH – update records
● DELETE – delete records
● HEAD – return header

2.3.2 GET Method

HO-2.3.2 H3 Perform the invocation of a GET REST request.

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 20 of 49

GET is the preferred method for accessing a resource on the internet. Hence it
is equivalent to the Read operation in databases. Much like the SELECT clause
in SQL, you request to return a set of data items. The format of a GET request
varies in terms of the underlying URI. The URI format is dependent upon the
application provider. The important characteristics of the GET request are
outlined below. A GET request:

● is a read-only request
● does not modify any resource
● is idempotent, i.e., when you request the same resource twice, it should

give the same response
● puts all the content in the URI
● typically, does not put anything in the body
● URI can take at best 64 KB of data
● is not encouraged when there is a need to send secured data.

2.3.3 POST Method

HO-2.3.3 H3 Perform invocation of a POST REST request.

POST is usually used when there is a need to send content of more than 64KB,
even for a database read operation. The important characteristics of the POST
request are listed below. A POST request:

● is used for sending secured data
● uses simple URIs but sends most content in the request body part
● as it typically corresponds to the database operation of creating a record,

it is recommended when there is a need to create a new resource on the
server

● is not idempotent

2.3.4 PUT Method

HO-2.3.4 H3 Perform invocation of a PUT REST request.

as it typically corresponds to the database operation of updating a record, PUT
method is recommended when there is a need to update an existing resource on

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 21 of 49

the server. The important characteristics of the PUT request are listed below. A
PUT request:

● is idempotent
● may use content in URI or in BODY
● updates the entire record, so all the field values (updated) should be

provided

2.3.5 PATCH Method

HO-2.3.5 H3 Perform invocation of a PATCH REST request.

PATCH is the same as PUT, except that you can do a partial update of the
resource on the server, unlike PUT, where all the fields are updated. As a result,
you can update one or two fields as well.

2.3.6 DELETE Method

HO-2.3.6 H3 Perform invocation of a DELETE REST request.

The DELETE method is used to indicate to the server to delete a stated
resource.

2.3.7 HEAD Method

HO-2.3.6 H3 Perform invocation of a HEAD REST request.

The HEAD method is a special case of the GET request, where only the response
headers are returned with no body. It is usually used to test response codes, or
to test if the server is up and running.

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 22 of 49

Chapter 3 – SOA

Keywords: SOA, Web Services, SOAP, WSDL, XML Schema,

LO-3.1.1 K1 Define SOA.

LO-3.1.2 K2 Understand the standards stack of SOA.

LO-3.1.3 K2 Summarize the features of XML schemas.

LO-3.1.4 K2 Summarize the features of SOAP.

LO-3.1.5 K2 Summarize the features of WSDL.

3.1 Basics of Service-Oriented Architecture (SOA)

3.1.1 Defining SOA
LO-
3.1.1

K1 Defining Service-Oriented Architecture (SOA).

SOA is an approach to software development that takes advantage of reusable
software applications, or services. It is an architecture style of distributed
systems based on standards-based interfaces for IT applications. IT applications
are published, located, and called using standards-based interfaces termed as
services. Services lower the cost of the integration of applications, due to
standards-based interfaces. Different companies and enterprises across the
globe have come together to define an end-to-end standards stack for SOA. The
SOA standards stack consists of an XML-based set of standards for language,
data messaging and the publishing of interfaces. There is also a set of standards
for non-functional requirements like security and reliability.

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 23 of 49

3.1.2 Defining the Standards Stack for SOA
LO-3.1.2 K2 Understand the standards stack of SOA.

SOA is based on a universal set of standards for each functioning layer of
distributed systems. In the context of the functioning of distributed systems,
there is a whole set of standards for all the functional and non-functional layers.
The concise stack is presented in the figure below.

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 24 of 49

3.1.3 Defining the XML Schema
LO-
3.1.3

K2 Summarize the features of XML schemas.

Usually, when a C client invokes a Java application, the number of bytes in C is
different from that in Java. These types of incompatibility causes are primarily
responsible for high integration costs. This data incompatibility can be
overcome by having a universal standard for data. That data standard is an
XML schema (see Ref [XMS]).

Any programming language has several data types for modeling data. An XML
schema defines the standard for data types that are independent of the
underlying language. Integration issues in data types usually happen when
there is a heterogeneity of the implementations of the data types in the different
languages.

An XML schema describes the grammar and structure of an XML document
and defines the:

● elements in the document
● attributes of elements in the document
● order of child elements in the document
● data types of the elements in the document
● default and fixed values of attributes and elements

There are two types of data types – Basic and Complex:

● Basic data types are the common data types generally found in
programming languages, e.g., Int, String, Float, etc.

● Complex data types are custom data types created out of basic data types
or other complex data types. An example of complex data type:

In this data, the schema talks of a product information structure, where there
are two basic elements: prodname is a text string, and barcode is an integer.

3.1.4 Defining SOAP
LO-3.1.4 K2 Summarize the features of SOAP.

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 25 of 49

HO-3.1.4 H3 Perform invocation of a SOAP request.

SOAP (see Ref[SOP]) is a universal standard for messaging, independent of the
underlying protocol being used. Several integration scenarios are possible in a
typical enterprise integration, that consists of both one-way and two-way
messaging. SOAP is modeled as a one-way messaging standard, independent of
the underlying transport layer of the network. A SOAP message can be sent
over a one-way protocol like SMTP, or over a two-way protocol like http(s).

SOAP defines the

● syntax and semantics for representing data in SOAP messages
● communication model for exchanging SOAP messages
● bindings (conventions and implementations) for specific transport

protocols like SMTP, or http
● conventions for both a two-way remote procedural call and a one-way

messaging

In any protocol, SOAP represents a one-way message. In SMTP, it will be a
one-way alert SOAP message. In a http binding, there are two SOAP messages,
one for SOAP request and another for SOAP response.

A typical SOAP message as above consists of three parts: a SOAP Envelope, a
SOAP Header (optional) and a SOAP Body. In addition, each SOAP message can
have a set of attachments to the message.

SOAP Message
 (Ref [SOF])

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 26 of 49

SOAP Envelope is the overall wrapper for the SOAP message. It consists of an
optional SOAP header and the actual SOAP body.

SOAP Header consists of zero or more header entries, each of which usually
consists of non-functional requirements related to the SOAP message
transmissions, e.g. security-related headers, billing-related headers, and user
identification headers, etc.

A SOAP Envelope has a single child SOAP Body node. A SOAP Body node
contains one or more body entries. The body entry could be a RPC method and
its parameters, or a custom XML message sent to the destination. When there is
an error in a http SOAP request, the relevant message is wrapped and sent as
SOAPFault.

Example of a typical SOAP-based http request:

POST /BookPrice http/1.1
Host: catalog.acmeco.com
Content-Type: text/xml;charset="utf-8" Content-Length: 640
SOAPAction:"GetBookPrice"

<SOAP-ENV:Envelope>
 xmlns:SOAP ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3c.org/2001/XMISchema-instance"
 xmlns:xsd="http://www.w3c.org/2001/XMISchema"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Header>
 <person:mail xmlns:person="http://acmeco.com/Header/">
 xyz@acmeco.com
 </person:mail>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <m:GetBookPrice xmlns:m="http://www.wiley.com/jws.book.priceList"›
 <bookname xsi:type='xsd:string'>
 Developing Java Web Services
 </bookname>
 </m:GetBookPrice>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Example of a typical SOAP-based http response:

http/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: 640

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3c.org/2001/XMLSchema-instance"

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 27 of 49

 xmlns:xsi="http://www.w3c.org/2001/XMLSchema"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Header>
 <wiley:Transaction
 xmlns:wiley="http://jws.wiley.com/2002/booktx"
 SOAP-ENV:mustUnderstand="1"›
 5
 </wiley:Transaction>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <m:GetBookPriceResponse
 xml:ns="http://www.wiley.com/jws.book.priceList">
 <Price>
 50.00
 </Price>
 </m:GetBookPriceREsponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This example shows that the transport binding of SOAP involves a request and
a response. The data in SOAP messages clearly include data in form of an XML
schema.

3.1.5 Defining WSDL
LO-3.1.5 K2 Summarize the features of WSDL.

HO-3.1.5 H3 Load a WSDL in SoapUI or a related tool.

WSDL (see Ref[WSD]) is an XML language used to describe and locate web
services. The different components of WSDL give detail about the functionality
of a service, and the location of the service implementation. WSDL provides all
the details required to enable any client to connect to the service and invoke
the service.

There are two parts of a WSDL: abstract WSDL and physical WSDL.

The abstract WSDL, known as a portType, contains the details of the
functionality of the service, independent of the language and location. The
physical WSDL, known as binding, consists of the physical implementation of
the interface, including port, IP address and transport details. A typical WSDL
example:

<definition namespace = “http/… “>
 <types> xschema types </types>

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 28 of 49

 <message> … </message>
 <porttype> a set of operations
 <operation> set of messages either input/output or only input or
only output </operation>
 </porttype>
 <binding> communication protocols </binding>
 <service> a list of binding and ports </service>
<definition>

The portype node contains the abstract WSDL part, and the service node
contains the physical WSDL part. An end-to-end example can be seen via the
link at Ref [WS1].
The node <types> defines types used in a message declaration in the form of an
XML schema:

<types>
 <schema targetNamespace="http://example.com/stockquote.xsd"
xmlns="http://www.w3.org/2000/10/XMLSchema">
 <element name="TradePriceRequest">
 <complexType>
 <all>
 <element name="tickerSymbol" type="string“
 minOccur = “1” maxOccur=“10”>
 <element name = “payment”>
 <complexType> <choice>
 <element name = “account” type=“string”>
 <element name = “creditcard” type=“string”>
 </choice> </complexType>
 </element>
 </all>
 </complexType>
 </element>
 </schema>
</types>

Here, the <types> tag is indicating an element that corresponds to a request for
getting the current stock price of a list of stocks. The example indicates that it
has two elements: a tickerSymbol which can take 1 to 10 stock symbols, and a
payment tag, which can be either an account or a credit card (both strings).

The <message> element defines the data elements of an operation. Each message
can consist of one or more parts. The parts can be compared to the parameters
of a function call in programming.

<message name="GetLastTradePriceInput">
 <part name="body" element="TradePriceRequest"/>
</message>
<message name="GetLastTradePriceOutput">

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 29 of 49

 <part name="body" element="TradePrice"/>
</message>

The <portType> element is the most important WSDL element. It defines the
functionality of a web service, the operations that can be performed, and the
messages that are involved. Each operation actually represents the kind of
message exchange allowed by the web service.

<portType name="StockQuotePortType">
 <operation name="GetLastTradePrice">
 <input message="tns:GetLastTradePriceInput"/>
 <output message="tns:GetLastTradePriceOutput"/>
 </operation>
</portType>

This example indicates a request-response kind of operation, which takes stock
names, and returns current prices of the stocks. WSDL defines four operation
types, request-response being the most common operation type:

• One-way: The operation can receive a message but will not return
a response

• Request-response: The operation can receive a request and will
return a response

• Solicit-response: The operation can send a request and will wait for
a response

• Notification: The operation can send a message but will not wait
for a response

Example of one-way request and response:
<portType name=“RegisterPort">
 <operation name=“register">
 <input name=“customer Info" message=“RegInfo"/>
 </operation>
 <operation name = “register Response”>
 <output name = “response” message=“ResponseInfo”/>
 </operation>
</portType >

Binding defines how messages are transmitted, and the location of the service,
for example:

<binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="GetLastTradePrice">
 <soap:operation soapAction="http://example.com/GetLastTradePrice"/>

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 30 of 49

 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
</binding>

The final node is service, which is a collection of bindings, along with actual
address for clients to invoke, for example:

<service name="StockQuoteService">
 <documentation>My first service</documentation>
 <port name="StockQuotePort" binding="tns:StockQuoteBinding">
 <soap:address location="http://example.com/stockquote"/>
 </port>
</service>

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 31 of 49

Chapter 4 - Microservices

Keywords: Microservices, REST, serverless, containers

4.1 Basics of Microservices

LO-4.1 K1 Define what Microservices are.

HO-4.1 H1 Examine the interface of a Microservice.

Microservices are basically services, however, they are of much smaller
granularity. An application is made up of several Microservices. The protocols
are lightweight, and communication is within homogeneous systems. The APIs
are typically based on REST and non-standard. Figure 4.1 illustrates the typical
Microservices design pattern.

Fig. 4.1 Typical Microservice Implementation (Ref [AW1])

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 32 of 49

This diagram shows a typical Microservices architecture. A monolithic
application is usually converted to several fine grained Microservices. Any
Microservice has the following specific characteristics:

Fine Grained: it is usually very fine grained, e.g., a single method, and at the
level of application components where several Microservices are integrated to
form an application.

Autonomous: From birth, to deployment, to management, the Microservice must
manage itself in its lifetime without depending upon other Microservices.

Resilient: Microservices architecture must show resiliency, i.e., the application
should continue to run independently of the failure of a specific Microservice.

Self-Contained: since the life cycle of the Microservice is maintained by itself,
without depending upon other Microservices, the Microservice should be self-
contained. As seen in Fig. 4.1, the Microservice maintains its own database and
application logic.

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 33 of 49

Chapter 5 - Testing APIs

Keywords: test design techniques, positive testing, negative testing, security
testing, equivalence partitioning, boundary value analysis, coverages, resiliency
testing, mocks

LO-5.1.1 K1 Recall the level of API testing in the test
pyramid.

LO-5.1.2 K1 Recall the advantages of API testing over GUI
testing.

LO-5.2.1 K3 Apply the positive testing identification
techniques to API testing.

LO-5.3.1 K3 Apply the negative testing identification
techniques to API testing.

LO-5.4.1 K1 Understand the security needs of API testing.

LO-5.4.2 K3 Apply security tests when testing APIs.

LO-5.5.1 K3 Apply load tests when testing APIs.

LO-5.6.1 K3 Apply orchestration tests when testing APIs.

LO-5.7.2 K3 Apply different kinds of assertions in API
testing.

LO-5.8 K1 Understand the need for mocking APIs.

LO-5.9 K1 Understand the specific testing needs of
Microservices.

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 34 of 49

5.1 API Testing in the Test Pyramid
5.1.1 API Testing in the Test Pyramid

LO-5.1.1 K1 Recall the level of API testing in the test pyramid.

In a typical test pyramid, API testing, also referred to as service testing, is
below the UI testing, and above unit testing. It can be viewed at the level of
component integration testing. Typically, several varieties of UIs can be built
using reusable APIs, which offer reusable data and methods to be passed on the
UI layer. In general, APIs are of higher granularity than UIs.

Figure 5.1.1 Importance of API testing in the test pyramid

 (Source: Ref[FO1])

5.1.2 Advantages of API Testing vs. GUI Testing
LO-5.1.2 K1 Recall the advantages of API testing over GUI

testing.

The different advantages of API testing are:

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 35 of 49

● a shift left in software testing life cycle because of the frequent reuse of
the methods and resources in APIs, across UIs where there is an early
detection of any functional bugs before they reach the GUI stage. In the
development process, the functionality in API is designed, developed, and
tested before GUI, hence shift left.

● the APIs describe stable contracts and do not change too often, leading to
lower maintenance costs of APIs

● the API layer offers a reusable resource used in multiple APIs, the actual
logic inside the APIs is tested before the GUI layer.

● the concise interfaces, which describe the APIs, render the testing of
APIs less time consuming.

● language independent due to XML/JSON as content – a key benefit of
APIs is the language independence due to the use of XML or JSON,
which reduces the number and variety of test cases to be tested.

API testing generally requires less time and is a more efficient way to test in
comparison to GUI testing.

5.2 Positive Testing of APIs
5.2.1 Positive Testing Techniques

LO-5.2.1 K3 Apply the positive testing techniques to API
testing.

5.2.1.1 Test Techniques for Testing of APIs

HO-5.2.1.1 H4 Apply typical test techniques to a real-world API.

The usual test techniques can be applied to real-world APIs, including REST
and SOAP. Some of the typical techniques applicable in this case would be:

● Equivalence Partitioning
● Boundary Value Analysis
● Exploratory Testing
● State Transition Testing
● Decision Table Testing

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 36 of 49

● Classification Tree Testing
● Pairwise Testing

5.2.1.2 Application of the Positive Testing of APIs

HO-5.2.1.2 H4 Apply typical positive test cases after deriving
them in a real-world API including response codes,
content inspection tests, schema compliance tests,
etc.

Positive testing is a type of software testing that is performed by assuming
everything will be as expected. Positive testing is not limited to payload and
body, but it also applies to headers and parameters in REST as well as in SOA.
If positive test cases fail, this shows its implementation was not complete.

Typical positive test cases for APIs involve the following tests from a functional
testing perspective:

● testing for headers in response
● testing for headers in request
● testing for right response codes
● testing of valid values in fields in resource
● testing of values in fields in parameters
● testing of API response bodies compliance to JSON schema/XML schema
● testing of response content parts in JSON or XML body or plain text
● testing of pre-request scripts

Typical positive test cases for APIs involve the following tests from a non-
functional testing perspective:

● testing of proper response times
● testing of authentication of APIs
● testing of authorization of APIs
● testing of graceful degradation of APIs
● testing of performance of APIs
● testing of edge cases for performance of APIs
● testing of privacy of APIs
● testing of multiple authentication factors in accessing the APIs

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 37 of 49

5.3 Negative Testing of APIs
5.3.1 Application of Negative Testing of APIs

LO-5.3.1 K3 Apply the negative testing identification
techniques to API testing.

HO-5.3.1 H4 Apply typical negative test cases after deriving
them in a real-world API, including illegal values,
illegal types, out of bounds values, etc.

Negative testing is a type of software testing that is performed by feeding
wrong data to the APIs and examining the behavior of the API. If negative tests
fail, it indicates improper exception handling. Due to the incomplete negative
testing of APIs, they fail in the real world when malafide data is fed to the
APIs.

Typical negative test cases are listed below:

● field values of illegal type (not of allowed type) in input
● field values out of bounds (allowed range) in input
● field values not allowed in input
● field value is null while it is mandatory
● field is omitted
● required field is excluded
● duplicate fields
● invalid XML or JSON not conforming to schema
● empty request
● invalid request header (an important header)
● in security, sending insecure data
● in security, sending wrong credentials
● in database APIs, sending corrupt data
● sending wrong METHOD (PUT instead of GET)
● no data in body when it expects data
● testing for multiple requests for load

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 38 of 49

5.4 Security Testing of APIs
5.4.1 Security Requirements of APIs

LO-5.4.1 K1 Understand the security needs of API testing.

As per the latest ISO 25010 standard (Ref [IS1]) security testing is a non-
functional testing type and it is one of the crucial quality characteristics.
Typical IT applications work on security to achieve the following objectives
towards the application. These applications are collectively known as the CIA
triad (Source Ref[CIA]).

Confidentiality (C): refers to the indication that the persons who are not
authorized to access an IT asset are not given access to it. This is
achieved usually by encryption.
Integrity (I): refers to ensuring that the information is not tampered on
the way to its destination, and it remains in its original form. This is
usually achieved by checksums and hash codes.
Availability (A): refers to making sure that the relevant information is
made available to genuine users.

A variety of techniques exist to guarantee the CIA triad for IT applications
security. The availability of APIs is guaranteed by a combination of
authentication and authorization techniques. The differences between
authentication and authorization is:

● Authentication: refers to establishing the identity of a user accessing a
system with a view to allowing only genuine users to be given access.

● Authorization: refers to mechanisms used to establish access control
levels for resources to users.

Testing for security is an important facet of the API testing life cycle. The top
10 API security concerns as per OWASP (Ref [OWS]) range from broken
authentication to different broken authorization systems.

5.4.2 Different Security Tests of APIs

LO-5.4.2 K3 Apply security tests when testing APIs.

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 39 of 49

HO-5.4.2 H4 Perform security testing to real APIs, including
different authentication types.

The typical security concerns, as highlighted in the previous section, provide
the need for different kinds of security tests designed for APIs. Some of the
security tests specifically designed for APIs include:

Test for authentication: different kinds of authentication mechanisms have been
designed for the authentication needs of APIs. According to the type of
authentication, the corresponding test case should use the technique to do both
positive and negative testing with correct as well as incorrect users. The
different kinds of authentications which are used in APIs include:

● username/password basic authentication: the username and password are
sent as plaintext after encoding the string as a base64 encoded form.

● digest authentication: the password is not sent, but a checksum computed
from the password is sent, and is checked at server.

● bearer authentication: a token is expected to be sent from client to the
server, and access is granted only if the request carries this token

● Kerberos authentication: over an insecure channel, a client proves its
identity to the server with a ticket.

Test for authorization: in the authorization of APIs, there is a need to test for
different access control mechanisms. Test for authorization involves checking
for the appropriate access control mechanisms via both positive and negative
tests.

Testing for encryption: depending upon the confidentiality need for the API, the
API might use different levels and kinds of encryption mechanisms for
handling the confidentiality of the API.

Penetration testing: with the objective of preventing potential threats to the
APIs, a comprehensive penetration testing of APIs is to be performed with the
right analysis of threats, and vulnerabilities, and testing with the appropriate
test cases. The vulnerabilities of APIs are described in the OWASP top ten
(Ref[OWS]).
Fuzz testing: It includes fuzzing the API parameters to unreasonable values to
test the API response and hence bring out any errors in the API backend.

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 40 of 49

5.5 Load Testing of APIs

LO-5.5.1 K3 Apply load tests when testing APIs.

HO-5.5.1 H3 Perform load testing to real APIs including
different load types.

Load Testing is an important non-functional testing addressing the performance
of systems (Ref [IS1]). Since APIs are exposed to different kinds of application
data in their invocations, and are usually called over the Internet, it is vital that
their availability is ensured for all genuine API users. To achieve availability
for all API users, it is important to test the API in terms of its performance
with respect to different load patterns. Several tools exist to simulate different
load patterns for the APIs, like JMeter, LoadUI, K6, etc.

These tools typically help in testing how an API can handle an expected
number of concurrent requests. They do it by artificially simulating calls for
load simultaneously. Being able to create simultaneous requests, they measure
metrics like response time, throughput, connection time, overall time.

The different patterns of API load tests include:

● Load test: it tests by accessing the API via the creation of several
concurrent virtual users. Response times are measured and checked to
find out whether they correspond to the expected numbers.

● Soak test (Endurance test): this kind of test measures the endurance of
the system by sending normal load for a long duration of time.

● Spike test: this is testing for sudden spikes in the load by causing sudden
peaks and observing the responses to them.

5.6 Integration Testing of APIs

LO-5.6.1 K3 Apply orchestration tests when testing APIs.

HO-
5.6.1.1

H3 Perform sequence testing of different APIs.

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 41 of 49

HO-
5.6.1.2

H3 Perform the data driven orchestration testing of
different APIs.

HO-
5.6.1.3

H3 Perform state-based orchestration testing using the
global and environment variables of different APIs.

HO-
5.6.1.4

H3 Perform real test oracle implementation by
comparing with with expected outputs.

Since APIs are standalone calls to applications delivering some functionality,
very often, more complex real-life scenarios involve combining multiple APIs in
a workflow to achieve the desired output. Such tests involving multiple APIs is
termed as orchestration testing.

The orchestration tests for API testing can involve several patterns:

1. A simple hard coded sequence of APIs.
2. Context sensitive orchestrations for APIs, where data at intermediate

stage dictates the subsequent APIs to be called.
3. Data-driven API orchestrations – different instances with varied

arguments are used to execute the same API, with arguments being in
various components of the API, be it the body or the URI, or the header.
The API testing tools allow for the parametrization of these parts of a URI
or header or body, and these parameterized data are fed into the tool
from an external CSV file or text file with the data.

4. Data Driven Test Oracles – if the expected outputs in response to data
driven API orchestrations are also fed in the tool from an external CSV
file, along with the values of the parameters, then a data driven test
oracle can be emulated in API testing orchestrations.

Some of the typical test design techniques are listed below:
● Decision Table testing
● Decision Tree testing
● Pairwise testing

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 42 of 49

5.7 Automation in API Testing

5.7.1 Assertions and Automation

Since APIs are effectively interfaces to functions, automating testing is possible
in APIs, just like any normal testing. The automation is achieved by specifying
the expected outputs and comparing this to the actual output of the API called.
In the context of API testing, this automation has to be enabled, all the while
taking into consideration the fact that the outputs could be in different
components of the APIs (the response codes, the response body)

These specifications are termed as Assertions, and they play an important role
in the automation of API testing. There are several kinds of assertions in the
context of API testing. Some of the important categories of these assertions are
listed in the following sections.

5.7.2 Different Assertions in API testing
LO-5.7.2 K3 Apply different kinds of assertions in API testing.

HO-5.7.2.1 H3 Perform test automation with different assertions
for different APIs in tools like SoapUI and
postman.

Generally, assertions are applied on the actual content output of an API, REST
or SOAP. The range of assertions could involve a range of patterns:

● Whole Text Contains: just checking an expected text in the whole
response.

● JSON/XML node data inspection: the most challenging of the content
inspections, this includes a systematic exploration of the JSON or XML
documents and comparing a specific subnode to match an expected
value. JSONPath or XPath based assertions are common in this kind of
assertion. API Testers may need to traverse through a whole array of the
data in the response, to find specific matching JSON/XML entries which
can then be examined for further content comparison.

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 43 of 49

● Header Inspection: typically associated with response or request headers,
these assertions test the presence or absence of headers, and in some
cases, the exact match of the values of the headers with expected values.

● Response Code Assertions: this kind of assertions are more common in
REST and SOAP, in both cases to examine the http response code with an
expected response code. A detailed set of response codes has been
explained in Section 2.2.6. In some cases, it is expected that an improper
access code is returned, such as 404. In that case, the appropriate
negative testing assertion should be used.

● Schema Compliance Assertions: in both JSON and XML, the documents
usually follow a well-defined grammar in the form of the underlying
JSON Schema or XML Schema. These assertions test for the compliance
of the responses or requests with respect to the underlying XML Schema
or JSON Schema grammars.

● Response Time SLA Assertions: typically associated with asserting
expected response time, these assertions will flag the SLA adherence to
or violations of the SLA response time asserted.

● Interoperability Assertions: specifically, in web services, there is a WS-I
interoperability profile adherence related assertion.

5.8 Mocking of Services

LO-5.8 K1 Understand the need for mocking APIs.

HO-5.8.1 H3 Perform the mocking of different APIs and test
the mock services.

Typically, a copy of the original API is used in mocking, in place of the original
API. The different use cases of mocking are:

● Simulation when implementation is not ready, specifically like complex
APIs

● Other services need to use the API, but the implementation is not ready
for integration testing

● Performance testing of APIs on a simulated version of the original
implementation, to avoid any issues in the original implementation behind
the API

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 44 of 49

● Some APIs cannot be tested in production
● You have to pay to use another API

Several forms of mocking have been proposed in APIs. Some of these are:

● Mocks
● Stubs
● Service virtualization

5.9 Testing Microservices

LO-5.9 K1 Understand the specific testing needs of
Microservices.

In most cases, the APIs of Microservices are exposed as REST interfaces.
Therefore, all the tests required for API testing in REST are necessary for
Microservices. These include the functional tests, positive tests, negative tests
for REST, and non-functional tests for REST APIs. There are two special cases
of Microservices which need a specific kind of testing in the case of
Microservices:

● Contract First Testing
● Resiliency Testing

5.8.1 Contract First Testing
LO-5.8.1 K2 Understand the steps in the contract first testing

of Microservices

Within an application, there is a strong need for efficient integration between
the different Microservices. The integration of two Microservices requires that
we test the interactions between the two microservices, as part of the
application.

A contract is technically the set of interactions between two Microservices.
This leads to a strong contract first testing of the contract between the provider
Microservice and consumer Microservice. The consumer Microservice should
test for the contract adherence of the provider Microservice. Likewise, the
provider Microservice should intimate any changes in the contract to all the

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 45 of 49

consuming Microservices to enable efficient integration testing. In several
cases, in which the consumer Microservice and provider Microservice are
developed at the same time, testers need to maintain the synchronization
between the two Microservices. In this context, special tools are used to
maintain this synchronization. These tools test a consumer Microservice by
mocking the provider Microservice, then by testing the provider Microservice
with a mock of the consumer Microservice. The tools known as “brokers” keep
tab of the contracts, and use the contracts as the basis for testing.

5.8.2 Resiliency Testing
LO-5.8.2 K2 Understand the Resiliency testing of

Microservices

Resiliency generally refers to the capability of an IT application to recover from
failures gracefully. Since Microservices are heavily dependent upon each other
to integrate into the application, the overall Microservices ecosystem needs to
be very resilient. In that context, it is important to run effective simulations of
different failure scenarios of the network. Tools for the resiliency testing of
Microservices involve generating scenarios like randomly bringing down
Microservices, and cutting off some connections between different
Microservices randomly.

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 46 of 49

Glossary

API: Application Programming Interface is the interface of a software
application through which the software application is called.

Granularity: Size of a software program; it can be of small, limited
functionality, or large functionality.

Client-Server: A kind of distributed systems architecture with two kinds
of systems: the providers of a resource, termed as servers, and resource
requesters termed as clients.

SOA: SOA is a special kind of client server architecture where software
applications are accessed using standards-based interfaces.

Microservices: A special kind of client server architecture where
software applications of small granularity are made accessible to external
software clients.

Protocol: A set of rules defining the transmission of data between two
nodes in a computer network.

Loosely Coupled: A style in which a calling software application does
not make any assumption about the called software application and vice
versa.

XML: Stands for eXtensible Markup Language, which is a standard
structured format for data, to be read by humans or machines.

Web Services: A set of standards for implementing SOA.

GUI: Stands for Graphical User Interface, a set of visual components for
interacting with the software.

SOAP: Stands for Simple Object Access Protocol, which refers to a Web
service standard for messages exchanged over a network.

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 47 of 49

WSDL: Stands for Web Service Description Language, which refers to a
Web service standard used to describe the details of the interface of a
service.

XML Schema: A Web service standard used to describe a universal
grammar for data, independent of programming language, based on XML.

Autonomous: Refers to the concept of self-managing software.

Java: An object-oriented programming language.

C: A procedural programming language.

JavaScript: A programming language for the web.

JSON: Stands for JavaScript object notation, which is a format used to
represent data in a structured hierarchical format.

URI: Stands for Uniform Resource Identifier which uniquely identifies
any resource on the Internet.

URL: A special form of URI, stands for Uniform Resource Locator, and is
used to identify network resources on the Internet.

URN: A special form of URI, stands for a generic approach to naming an
object, different from URL.

HTTP: Stands for Hypertext Transfer Protocol, a special kind of
computer network protocol for clients used to send and receive messages
to/from a special type of server: Web server.

Contract: Stands for the set of interactions between an IT provider and
an IT consumer.

Confidentiality: Information is not made available or disclosed to
unauthorized individuals, entities or processes.

Integrity: safeguarding the accuracy and completeness of an information
asset.

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 48 of 49

Availability: being accessible and usable upon demand by an authorized
entity.

Authentication: ensuring the only genuine people access an information
asset.

Authorization: ensuring that there are sufficient permissions to carry out
an operation or to access an information asset.

Assertion: A statement expected to be true.

Mock: A replica of the original API.

Response Code: A three-digit code returned by an HTTP request.

Resiliency: Capability of recovering from a failure gracefully.

Invocation: Calling a function or an API.

Orchestration: Coordinating several APIs in a sequence or workflow.

API CARMT with Postman or Karate - Syllabus V1.0

Version 1.0 ©API United (APIU) Page 49 of 49

References

[ur] https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml

[ur1]
https://upload.wikimedia.org/wikipedia/commons/5/51/URI_Components_Full_Ex
ample_httpS.svg

[co1] https://datatracker.ietf.org/doc/html/rfc7231

[WS1] http://www.dneonline.com/calculator.asmx?wsdl

[FO1] https://martinfowler.com/bliki/TestPyramid.html

[CIA] https://en.wikipedia.org/wiki/Information_security

[OWS] https://www.netsparker.com/blog/web-security/owasp-api-security-top-
10/

[XML] https://www.w3.org/XML/

[XMS] https://www.w3.org/XML/Schema

[SOP] http://www.w3.org/TR/SOAP

[WSD] https://www.w3.org/TR/wsdl.html

[SOF] https://docs.oracle.com/cd/E19159-01/819-3669/6n5sg7br6/index.html

[AW1] AWS Lambda Documentation

[IS1] https://www.iso.org/standard/35733.html

https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
https://upload.wikimedia.org/wikipedia/commons/5/51/URI_Components_Full_Example_httpS.svg
https://upload.wikimedia.org/wikipedia/commons/5/51/URI_Components_Full_Example_httpS.svg
https://datatracker.ietf.org/doc/html/rfc7231
http://www.dneonline.com/calculator.asmx?wsdl
https://martinfowler.com/bliki/TestPyramid.html
https://en.wikipedia.org/wiki/Information_security
https://en.wikipedia.org/wiki/Information_security
https://en.wikipedia.org/wiki/Information_security
https://www.netsparker.com/blog/web-security/owasp-api-security-top-10/
https://www.netsparker.com/blog/web-security/owasp-api-security-top-10/
https://www.w3.org/XML/
https://www.w3.org/XML/Schema
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP
https://www.w3.org/TR/wsdl.html
https://docs.oracle.com/cd/E19159-01/819-3669/6n5sg7br6/index.html
https://www.iso.org/standard/35733.html

